विशेष फलन (special function)

"निम्न विशेष फलनों के महत्वपूर्ण सूत्र और गुण संक्षेप में दिए गए हैं, जिससे उन्हें आसानी से याद किया जा सकता है।"
Special function

1. बेसल फलन (Bessel Function)

बेसल फलन दो प्रकार के होते हैं:

  • Jn(x)J_n(x): प्रथम प्रकार का बेसल फलन
  • Yn(x)Y_n(x): द्वितीय प्रकार का बेसल फलन

(i) बेसल अवकल समीकरण (Bessel Differential Equation)

x2y+xy+(x2n2)y=0x^2 y'' + x y' + (x^2 - n^2)y = 0

(ii) पुनरागमन सूत्र (Recurrence Relations)

बेसल फलन के सभी पुनरागमन सूत्र निम्न है:

  1. Jn1(x)Jn+1(x)=2nxJn(x)J_{n-1}(x) - J_{n+1}(x) = \frac{2n}{x} J_n(x)

  2. Jn1(x)+Jn+1(x)=2nxJn(x)+Jn(x)J_{n-1}(x) + J_{n+1}(x) = \frac{2n}{x} J_n(x) + J_n'(x)

  3. Jn(x)=12(Jn1(x)Jn+1(x))J_n'(x) = \frac{1}{2} \left( J_{n-1}(x) - J_{n+1}(x) \right)

  4. x(Jn1(x)+Jn+1(x))=2nJn(x)x \left( J_{n-1}(x) + J_{n+1}(x) \right) = 2n J_n(x)

  5. x(Jn(x)+Jn1(x))=2nJn(x)x \left( J_n(x) + J_{n-1}(x) \right) = 2n J_n(x)

  6. Jn(x)=2nxJn1(x)+Jn2(x)J_n(x) = \frac{2n}{x} J_{n-1}(x) + J_{n-2}(x)

  7. Jn+1(x)=Jn(x)nxJn(x)J_{n+1}(x) = J_n'(x) - \frac{n}{x} J_n(x)

  8. Jn(x)=Jn1(x)+Jn+1(x)2J_n(x) = \frac{J_{n-1}(x) + J_{n+1}(x)}{2}

(iii) जनक फलन (Generating Function)

ex2(t1t)=n=Jn(x)tne^{\frac{x}{2}(t - \frac{1}{t})} = \sum_{n=-\infty}^{\infty} J_n(x) t^n

(iv) लांबिकता गुण (Orthogonality Property)

01xJm(αx)Jn(αx)dx=0,mn\int_0^1 x J_m(\alpha x) J_n(\alpha x) dx = 0, \quad m \neq n

(v) रोड्रिग्ज़ सूत्र (Rodrigues' Formula)

Jn(x)=12π02πei(nθxsinθ)dθJ_n(x) = \frac{1}{2\pi} \int_0^{2\pi} e^{i(n\theta - x\sin\theta)} d\theta

(vi) बेसल अवकल समीकरण का हल (Solution)

Jn(x)=k=0(1)kk!Γ(n+k+1)(x2)2k+nJ_n(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \Gamma(n+k+1)} \left(\frac{x}{2}\right)^{2k+n}

2. हरमाइट बहुपद (Hermite Polynomial)

(i) हरमाइट अवकल समीकरण (Hermite Differential Equation)

Hn(x)2xHn(x)+2nHn(x)=0H_n''(x) - 2x H_n'(x) + 2n H_n(x) = 0

(ii) पुनरागमन सूत्र (Recurrence Relations)

  1. Hn+1(x)=2xHn(x)2nHn1(x)H_{n+1}(x) = 2x H_n(x) - 2n H_{n-1}(x)
  2. Hn(x)=2nHn1(x)H_n'(x) = 2n H_{n-1}(x)
  3. Hn+1(x)=2Hn(x)+Hn(x)H_{n+1}'(x) = 2 H_n(x) + H_n'(x)
  4. Hn(x)=2nHn2(x)H_n''(x) = 2n H_{n-2}(x)
  5. Hn(x)=(1)nex2dndxnex2H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2} (Rodrigues' formula)
  6. Hn(x)=(1)nHn(x)H_n(-x) = (-1)^n H_n(x) (Symmetry property)
  7. ex2Hn(x)dx=2n1n!π(n/2)!\int e^{-x^2} H_n(x) dx = \frac{2^{n-1} n! \sqrt{\pi}}{(n/2)!} (Integral relation)
  8. xHn(x)=Hn+1(x)+nHn1(x)2

(iii) जनक फलन (Generating Function)

e2xtt2=n=0Hn(x)tnn!e^{2xt - t^2} = \sum_{n=0}^{\infty} H_n(x) \frac{t^n}{n!}

(iv) लांबिकता गुण (Orthogonality Property)

ex2Hm(x)Hn(x)dx=0,mn\int_{-\infty}^{\infty} e^{-x^2} H_m(x) H_n(x) dx = 0, \quad m \neq n

(v) रोड्रिग्ज़ सूत्र (Rodrigues' Formula)

Hn(x)=(1)nex2dndxnex2H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}

(vi) हरमाइट बहुपद का हल (Solution)

Hn(x)=(1)nex2dndxnex2H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}

3. लीजेंड्रे बहुपद (Legendre Polynomial)

(i) लीजेंड्रे अवकल समीकरण (Legendre Differential Equation)

(1x2)Pn(x)2xPn(x)+n(n+1)Pn(x)=0(1-x^2) P_n''(x) - 2x P_n'(x) + n(n+1) P_n(x) = 0

(ii) पुनरागमन सूत्र (Recurrence Relations)

  1. (n+1)Pn+1(x)=(2n+1)xPn(x)nPn1(x)(n+1) P_{n+1}(x) = (2n+1)x P_n(x) - n P_{n-1}(x)

  2. Pn+1(x)=(2n+1)xPn(x)nPn1(x)n+1P_{n+1}(x) = \frac{(2n+1)x P_n(x) - n P_{n-1}(x)}{n+1}

  3. (1x2)Pn(x)=nPn1(x)nxPn(x)(1 - x^2) P_n'(x) = n P_{n-1}(x) - n x P_n(x)

  4. Pn(x)=nx21(xPn(x)Pn1(x))P_n'(x) = \frac{n}{x^2 - 1} \left( x P_n(x) - P_{n-1}(x) \right)

  5. Pn+1(x)=(n+1)Pn(x)+xPn(x)P_{n+1}'(x) = (n+1) P_n(x) + x P_n'(x)

  6. Pn(x)dx=Pn+1(x)Pn1(x)2n+1\int P_n(x) dx = \frac{P_{n+1}(x) - P_{n-1}(x)}{2n+1}

  7. Pn(x)=(1)nPn(x)P_n(-x) = (-1)^n P_n(x)

  8. Pn(x)=12nn!dndxn(x21)nP_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n

(iii) जनक फलन (Generating Function)

112xt+t2=n=0Pn(x)tn\frac{1}{\sqrt{1 - 2xt + t^2}} = \sum_{n=0}^{\infty} P_n(x) t^n

(iv) लांबिकता गुण (Orthogonality Property)

11Pm(x)Pn(x)dx=0,mn\int_{-1}^{1} P_m(x) P_n(x) dx = 0, \quad m \neq n

(v) रोड्रिग्ज़ सूत्र (Rodrigues' Formula)

Pn(x)=12nn!dndxn(x21)nP_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n

(vi)  लीजेंड्रे बहुपद का हल (Solution)

Pn(x)=12nk=0n/2(1)k(2n2k)!k!(nk)!(n2k)!xn2kP_n(x) = \frac{1}{2^n} \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \frac{(2n - 2k)!}{k! (n-k)! (n-2k)!} x^{n-2k}

4. संयुक्त लीजेंड्रे बहुपद (Associated Legendre Polynomial)

(i) संयुक्त लीजेंड्रे अवकल समीकरण

(1x2)Pn,m(x)2xPn,m(x)+[n(n+1)m21x2]Pn,m(x)=0(1-x^2) P_{n,m}''(x) - 2x P_{n,m}'(x) + \left[ n(n+1) - \frac{m^2}{1-x^2} \right] P_{n,m}(x) = 0

(ii) रोड्रिग्ज़ सूत्र 

Pn,m(x)=(1x2)m/2dmdxmPn(x)P_{n,m}(x) = (1-x^2)^{m/2} \frac{d^m}{dx^m} P_n(x)

5. लागुएर बहुपद (Laguerre Polynomial)

(i) लागुएर अवकल समीकरण (Laguerre Differential Equation)

xLn(x)+(1x)Ln(x)+nLn(x)=0x L_n''(x) + (1-x) L_n'(x) + n L_n(x) = 0

(ii) पुनरागमन सूत्र (Recurrence Relations)

  1. Ln+1(x)=(2n+1x)Ln(x)nLn1(x)n+1L_{n+1}(x) = \frac{(2n+1-x) L_n(x) - n L_{n-1}(x)}{n+1}
  2. xLn(x)=nLn(x)nLn1(x)x L_n'(x) = n L_n(x) - n L_{n-1}(x)
  3. Ln(x)=Ln1(x)L_n'(x) = -L_{n-1}(x)
  4. Ln(x)=Ln2(x)L_n''(x) = L_{n-2}(x)
  5. Ln(0)=1L_n(0) = 1 (Initial condition)
  6. Ln(x)=exLn(x)L_n(-x) = e^x L_n(x)
  7. Ln(x)=exdndxn(xnex)L_n(x) = e^x \frac{d^n}{dx^n} (x^n e^{-x}) (Rodrigues' formula)
  8. exLn(x)dx=exLn+1(x)

(iii) जनक फलन (Generating Function)

ext/(1t)1t=n=0Ln(x)tn\frac{e^{-xt/(1-t)}}{1-t} = \sum_{n=0}^{\infty} L_n(x) t^n

(iv) लांबिकता गुण (Orthogonality Property)

0exLm(x)Ln(x)dx=0,mn\int_0^\infty e^{-x} L_m(x) L_n(x) dx = 0, \quad m \neq n

(v) रोड्रिग्ज़ सूत्र (Rodrigues' Formula)

Ln(x)=exn!dndxn(xnex)L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^n e^{-x})

6. निर्देशांक प्रणालियाँ (Coordinate Systems)

वक्ररेखीय निर्देशांक प्रणाली में तीन महत्वपूर्ण प्रणालियाँ होती हैं:

(i) कार्टीशियन निर्देशांक (Cartesian Coordinates)

इसमें बिंदु को (x,y,z)(x, y, z) के रूप में व्यक्त किया जाता है।
अवकल ऑपरेटर:

=xi^+yj^+zk^\nabla = \frac{\partial}{\partial x} \hat{i} + \frac{\partial}{\partial y} \hat{j} + \frac{\partial}{\partial z} \hat{k}

(ii) बेलनाकार निर्देशांक (Cylindrical Coordinates)

इसमें बिंदु को (r,θ,z)(r, \theta, z) के रूप में व्यक्त किया जाता है।
संबंध:

x=rcosθ,y=rsinθ,z=zx = r \cos\theta, \quad y = r \sin\theta, \quad z = z

लाप्लासियन:

2=1rr(rr)+1r22θ2+2z2\nabla^2 = \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} + \frac{\partial^2}{\partial z^2}

(iii) गोलाकार निर्देशांक (Spherical Coordinates)

इसमें बिंदु को (r,θ,ϕ)(r, \theta, \phi) के रूप में व्यक्त किया जाता है।
संबंध:

x=rsinθcosϕ,y=rsinθsinϕ,z=rcosθx = r \sin\theta \cos\phi, \quad y = r \sin\theta \sin\phi, \quad z = r \cos\theta

लाप्लासियन:

2=1r2r(r2r)+1r2sinθθ(sinθθ)+1r2sin2θ2ϕ2\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin\theta} \frac{\partial}{\partial \theta} \left( \sin\theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2\theta} \frac{\partial^2}{\partial \phi^2}



एक टिप्पणी भेजें

Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.
NextGen Digital Welcome to WhatsApp chat
Howdy! How can we help you today?
Type here...